
Compilation of driving simulation 
languages via retargetable and 
semantics-based translation

Prof. Dr.-Ing. Jörn Schneider

Kontakt: J.Schneider@hochschule-trier.de



Interdisciplinary Research

Engineering &
Computer Science

Cognitive
Psychology

Trier University of
Applied Sciences

University
of Trier

FVV – Research Cluster for Traffic 
Technology and Traffic Safety

@ @+



Two Simulation Targets: Human Driver and Automated Driving System

3

Our Driving Simulator FaSiMo

SILAB

ASAM OpenDrive

OKSTRA

?

?



New Tower of Babel:
Driving Simulator Languages

OEM Tier-1

Tier-2 Tier-2 Tier-2

Type-
Approval
Authority

Internally:
ASAM OpenDrive V 1.7 (Unit 1)
ASAM OpenDrive V 2.0 (Unit 2)
SILAB (Unit 3)
…

Translation
Required!



ConclusionSemanticsApproachChallengeTranslator

• Objectives
• Retargetable Translator
• Challenge: Semantics
• Solution Idea
• Translation Semantics
• Conclusion

5

Outline
Objectives



Reliable Translation

• Development Processes according to Safety standards, such as 
SOTIF, rely on simulation
• Type Approval of Automated Driving Functions will rely on 

driving simulation

• Consequence:
Correctness of translation is fundamental for safety and 
reliability of our future mobility

ConclusionSemanticsApproachChallengeTranslatorObjectives



Formal Semantics is needed!

• Semantics attaches „meaning“ to syntax
• Syntax of languages might differ, but the „meaning“ must be well 

defined!
• Formal Semantics fundamental to

• Specify „meaning“ of language constructs
• Generate tools (Translators, Analyzers, …)
• Test or verify correctness

• How to validate or verify whether a translation is correct, without a 
formal specification?
• Automated driving has enough uncertainties (e.g. Black Swans)
• We should strife for elimination of vagueness and uncertainties where possible

ConclusionSemanticsApproachChallengeTranslatorObjectives



Retargetable Translator
ConclusionSemanticsApproachChallengeObjectives Translator



Retargetable Translator
ConclusionSemanticsApproachChallengeObjectives Translator



Retargetable Translator
ConclusionSemanticsApproachChallengeObjectives Translator



Retargetable Translator
ConclusionSemanticsApproachChallengeObjectives Translator



Current Focus

• Languages/Formats:
• SILAB (WIVW GmbH)
• ASAM OpenDrive
• OKSTRA

• Simulated Objects/Aspects
• Road Network
• Stationary Items (e.g. Traffic Signs)
• Static Properties

ConclusionSemanticsApproachChallengeObjectives Translator



Current Focus

• Languages/Formats:
• SILAB (WIVW GmbH)
• ASAM OpenDrive
• OKSTRA

• Simulated Objects/Aspects
• Road Network
• Stationary Items (e.g. Traffic Signs)
• Static Properties

concept does not contradict to include temporal aspects like
a time since a previous event (e.g., overtaking a vehicle or
being obstructed by a slow front vehicle).

Geyer’s [8] definition suggests to include “optional driving
instructions” as a part of the scene. Vice versa, according to
Wershofen & Graefe [9] the robot’s goals should be part of
the situation. Similarly, Haag [10] and Krüger [11] differenti-
ate between a scene and a situation by the aspect of actions
and possible action alternatives. Linked to this, the aspect
of a self-representation discussed by Maurer [7], Bergmiller
[12] and Reschka et al. [13] is not yet covered. The authors
share the opinion, that a scene does not only cover envi-
ronment aspects, but also the aspect of a self-representation.
For automated driving, the authors suggest to make goal-
specific driving instructions rather part of the situation, but
add the idea of a self-representation to the scene definition.
We suggest to understand Geyer’s driving instructions just
as information being part of the self-representation and not
as goals. Thus, the author will use the term scene in the
following way:

A scene describes a snapshot of the environment in-
cluding the scenery and dynamic elements, as well
as all actors’ and observers’ self-representations,
and the relationships among those entities. Only a
scene representation in a simulated world can be
all-encompassing (objective scene, ground truth).
In the real world it is incomplete, incorrect, un-
certain, and from one or several observers’ points
of view (subjective scene).

In this definition, an actor is an element of a scene acting
on its own behalf. An observer1 is a perceiving element
within the scene or is observing the scene as a whole. An
element might be an actor and observer at the same time.
Dynamic elements are elements that are moving, or have
the ability to move. The scenery subsumes all geo-spatially
stationary elements (cf. section III).

By being based either on observed information or a-
priori-information that needs to be associated with observed
information, a perceived scene will always be a subjective
view of the world. Even if multiple observers share their
information, it will not result in an objective representation
of the world, but rather the view from multiple subjective
observers. Thus, for a scene representation, an actor strives
to achieve complete and certain information about the world,
but in reality the scene will always be from an/several
observer’s point of view. However, in a simulated world
a scene can be complete and uncertainty-free as from an
omniscient observer’s point of view.

A scene serves the basic purpose of an interface between
environment and self-perception modules on the one side,
and application- and mission-specific modules and tasks on
the other side. A sequence of scenes is considered here as a
scenario and is described in section VI of this article.

1This is not an observer as in the sense of control engineering.

III. EXEMPLARY SCENE IMPLEMENTATION
After reviewing definitions of the term scene, this sec-

tion illustrates the implementation chosen in the Stadtpilot
project at TU Braunschweig (cf. Ulbrich et al. [3]). Figure 2
illustrates the components of a scene. A scene consists of
the geo-spatially stationary scenery, dynamic elements, and
a self-representation of all actors and observers.

Scene
Dynamic elements
• Dynamic objects‘ states and attributes
• Dynamic model-incompliant information

Self-representations of actors and observers
• Skills and abilities, e.g., field of view or occlusions
• Actors‘/observers‘ states and attributes

Scenery
• Lane network (lanes, conflict areas, …)
• Stationary elements (obstacles, curbs, traffic

signs, traffic light positions, model-incompliant
information, …)

• Vertical elevation
• Environment conditions

R
el

at
io

ns
hi

ps
am

on
g

en
tit

ie
s

Fig. 2. Example of a (subjective) scene representation of the real world

Deviating from Geyer’s [8] definition of “dynamic ele-
ments” being based on the temporal extent of their scene
definition, we assume dynamic elements to move (having
kinetic energy), or possibly being able to move (having
sufficient energy and abilities to move). Past movements
(object has stopped at traffic light) are a strong indicator
for potential movements in the immediate future. Current
perception skills of technical systems are not sufficient to
classify stationary elements as dynamic, therefore a statue
anchored to the ground may currently not be differentiable
from a not moving pedestrian. Hence, a pedestrian may
possibly be misclassified as being part of the scenery, or
a statue as being part of the dynamic elements.

Similar to Matthaei [14], we consider environment condi-
tions like weather or light to be part of the scenery as they
are quasi-stationary for a scene being just a snapshot with an
age in terms of milliseconds. Geyer considers the position
of traffic lights or variable traffic signs to be part of the
scenery, but seems to consider their state being part of the
dynamic elements. Once more, based on the snapshot scene
definition, we only require the scenery to be geo-spatially
stationary, thus a changing speed limit sign or traffic light is
still considered being part of the scenery.

The scenery subsumes all geo-spatially stationary aspects
of the scene. This entails metric, semantic and topological
information about roads and all their components like lanes,
lane markings, road surfaces, or the roads’ domain types.
Moreover, this subsumes information about conflict areas
between lanes as well as information about their interconnec-
tions, e.g., at intersections. Apart from the before mentioned
environment conditions, the scenery also includes stationary
elements like houses, fences, curbs, trees, traffic lights, or
traffic signs.

The scene representation is completed by a self-
representation containing the current skill levels and general

Source: Ulbrich; Menzel; Reschka; Schuldt; Maurer:
Defining and Substantiating the Terms Scene,
Situation, and Scenario for Automated Driving. 2015
IEEE 18th International Conference on Intelligent
Transportation Systems. IEEE, Sept. 2015.

ConclusionSemanticsApproachChallengeObjectives Translator



Translator

Challenge: Semantics

• What is the semantics of road elements in driving simulation?
• Geometry?
• Markings?
• Friction/Roughness?
• Color?
• Texture?
• Reflection characteristic of radar signals?
• …

• May be a flat model with “exact” and “complete” physical 
properties?
• Lacks more abstract aspects (e.g. Traffic Sign)

ConclusionSemanticsApproachChallengeObjectives



How is this solved for Programming
Languages?

4 Jörn Schneider, Marvin Schneider

programs, and ⌃ the space of possible states of the interpreters. The interpreters and the
translator can be considered as functions

�1 : !1 ⇥ ⇢⇤
⇥ ⌃ ! ⌃ ⇥ �⇤

�2 : !2 ⇥ ⇢⇤
⇥ ⌃ ! ⌃ ⇥ �⇤

) : !1 ! !2

Let’s assume we have a formal semantics for !1 and !2, e. g. as denotational semantics,
which could be defined as set of partial functions specifying the semantics of each language
construct. For example, if Com is the syntactic set of commands of a language, the semantic
function

C : Com ! (⌃ ! ⌃)

provides for each valid command a function that describes the e�ects of the command on
the state of the system. For a given language construct to assign a value to a variable the
matching partial definition of C could be

C»G := 0… = {(f,f[G/=]) |f 2 ⌃ ^ = = A»0…},

where A : AExp ! (⌃ ! N) is the semantic function for arithmetic expressions.2 For
our Translator ) we could identify matching partial functions of the semantics of the input
and the output languages for each construct of the input language.3 Given these pairs, we
would have a starting ground to prove the correctness of the translation by showing that the
corresponding partial functions indeed deliver the same results.

However, to follow that approach would require to establish a formal semantics for each
language, be it input or output, we consider for our retargetable translator.

3.2 (Formal) Semantics of Driving Simulator Languages

Considering the task to translate from one driving simulator language to another, one would
like to have a formal semantics for each of the involved languages, for example a semantics
such as the one sketched above, which maps language constructs to changes of the system
state.

In compiler design an abstract machine is typically used to describe the e�ect of a certain
language construct. For these abstract machines there usually is a more or less straight-
forward way to come up with a mapping to real processor architectures. Moreover, they
can constitute a bridge between the programming language paradigm (e. g. of a functional
programming language) and the strictly imperative execution style of real hardware.

2 Note, that the brackets »… are traditional in denotational semantics.
3 In practice this is typically not quite as easy as it might seem. Especially not, if the two languages belong to

di�erent families, e. g. an imperative and a functional programming language.

Denotational Semantics:

4 Jörn Schneider, Marvin Schneider

programs, and ⌃ the space of possible states of the interpreters. The interpreters and the
translator can be considered as functions

�1 : !1 ⇥ ⇢⇤
⇥ ⌃ ! ⌃ ⇥ �⇤

�2 : !2 ⇥ ⇢⇤
⇥ ⌃ ! ⌃ ⇥ �⇤

) : !1 ! !2

Let’s assume we have a formal semantics for !1 and !2, e. g. as denotational semantics,
which could be defined as set of partial functions specifying the semantics of each language
construct. For example, if Com is the syntactic set of commands of a language, the semantic
function

C : Com ! (⌃ ! ⌃)

provides for each valid command a function that describes the e�ects of the command on
the state of the system. For a given language construct to assign a value to a variable the
matching partial definition of C could be

C»G := 0… = {(f,f[G/=]) |f 2 ⌃ ^ = = A»0…},

where A : AExp ! (⌃ ! N) is the semantic function for arithmetic expressions.2 For
our Translator ) we could identify matching partial functions of the semantics of the input
and the output languages for each construct of the input language.3 Given these pairs, we
would have a starting ground to prove the correctness of the translation by showing that the
corresponding partial functions indeed deliver the same results.

However, to follow that approach would require to establish a formal semantics for each
language, be it input or output, we consider for our retargetable translator.

3.2 (Formal) Semantics of Driving Simulator Languages

Considering the task to translate from one driving simulator language to another, one would
like to have a formal semantics for each of the involved languages, for example a semantics
such as the one sketched above, which maps language constructs to changes of the system
state.

In compiler design an abstract machine is typically used to describe the e�ect of a certain
language construct. For these abstract machines there usually is a more or less straight-
forward way to come up with a mapping to real processor architectures. Moreover, they
can constitute a bridge between the programming language paradigm (e. g. of a functional
programming language) and the strictly imperative execution style of real hardware.

2 Note, that the brackets »… are traditional in denotational semantics.
3 In practice this is typically not quite as easy as it might seem. Especially not, if the two languages belong to

di�erent families, e. g. an imperative and a functional programming language.

Example for Assignment Statement (x:=a):

4 Jörn Schneider, Marvin Schneider

programs, and ⌃ the space of possible states of the interpreters. The interpreters and the
translator can be considered as functions

�1 : !1 ⇥ ⇢⇤
⇥ ⌃ ! ⌃ ⇥ �⇤

�2 : !2 ⇥ ⇢⇤
⇥ ⌃ ! ⌃ ⇥ �⇤

) : !1 ! !2

Let’s assume we have a formal semantics for !1 and !2, e. g. as denotational semantics,
which could be defined as set of partial functions specifying the semantics of each language
construct. For example, if Com is the syntactic set of commands of a language, the semantic
function

C : Com ! (⌃ ! ⌃)

provides for each valid command a function that describes the e�ects of the command on
the state of the system. For a given language construct to assign a value to a variable the
matching partial definition of C could be

C»G := 0… = {(f,f[G/=]) |f 2 ⌃ ^ = = A»0…},

where A : AExp ! (⌃ ! N) is the semantic function for arithmetic expressions.2 For
our Translator ) we could identify matching partial functions of the semantics of the input
and the output languages for each construct of the input language.3 Given these pairs, we
would have a starting ground to prove the correctness of the translation by showing that the
corresponding partial functions indeed deliver the same results.

However, to follow that approach would require to establish a formal semantics for each
language, be it input or output, we consider for our retargetable translator.

3.2 (Formal) Semantics of Driving Simulator Languages

Considering the task to translate from one driving simulator language to another, one would
like to have a formal semantics for each of the involved languages, for example a semantics
such as the one sketched above, which maps language constructs to changes of the system
state.

In compiler design an abstract machine is typically used to describe the e�ect of a certain
language construct. For these abstract machines there usually is a more or less straight-
forward way to come up with a mapping to real processor architectures. Moreover, they
can constitute a bridge between the programming language paradigm (e. g. of a functional
programming language) and the strictly imperative execution style of real hardware.

2 Note, that the brackets »… are traditional in denotational semantics.
3 In practice this is typically not quite as easy as it might seem. Especially not, if the two languages belong to

di�erent families, e. g. an imperative and a functional programming language.

With as semantic function for arithmetic expressions,

and

4 Jörn Schneider, Marvin Schneider

programs, and ⌃ the space of possible states of the interpreters. The interpreters and the
translator can be considered as functions

�1 : !1 ⇥ ⇢⇤
⇥ ⌃ ! ⌃ ⇥ �⇤

�2 : !2 ⇥ ⇢⇤
⇥ ⌃ ! ⌃ ⇥ �⇤

) : !1 ! !2

Let’s assume we have a formal semantics for !1 and !2, e. g. as denotational semantics,
which could be defined as set of partial functions specifying the semantics of each language
construct. For example, if Com is the syntactic set of commands of a language, the semantic
function

C : Com ! (⌃ ! ⌃)

provides for each valid command a function that describes the e�ects of the command on
the state of the system. For a given language construct to assign a value to a variable the
matching partial definition of C could be

C»G := 0… = {(f,f[G/=]) |f 2 ⌃ ^ = = A»0…},

where A : AExp ! (⌃ ! N) is the semantic function for arithmetic expressions.2 For
our Translator ) we could identify matching partial functions of the semantics of the input
and the output languages for each construct of the input language.3 Given these pairs, we
would have a starting ground to prove the correctness of the translation by showing that the
corresponding partial functions indeed deliver the same results.

However, to follow that approach would require to establish a formal semantics for each
language, be it input or output, we consider for our retargetable translator.

3.2 (Formal) Semantics of Driving Simulator Languages

Considering the task to translate from one driving simulator language to another, one would
like to have a formal semantics for each of the involved languages, for example a semantics
such as the one sketched above, which maps language constructs to changes of the system
state.

In compiler design an abstract machine is typically used to describe the e�ect of a certain
language construct. For these abstract machines there usually is a more or less straight-
forward way to come up with a mapping to real processor architectures. Moreover, they
can constitute a bridge between the programming language paradigm (e. g. of a functional
programming language) and the strictly imperative execution style of real hardware.

2 Note, that the brackets »… are traditional in denotational semantics.
3 In practice this is typically not quite as easy as it might seem. Especially not, if the two languages belong to

di�erent families, e. g. an imperative and a functional programming language.

as state space of the executing abstract machine

Translator ConclusionSemanticsApproachChallengeObjectives



Abstract Driving Simulator Machine as 
key to solution?
• Interesting concept from a certain research perspective

• However: Machine Learning Algorithms cannot abstract!
• Tiny input differences can lead to a major perturbation, e.g. by 

completely different classifications

Translator ConclusionSemanticsApproachChallengeObjectives



Challenge

Our Approach

• There are (currently) no suitable
• (universal) abstract driving simulator machines
• physical property models

• Therefore we base semantics on translation itself
• States are sets of language constructs consisting of tokens 

(keywords), names (identifiers), and attributes (key-value-pairs)
• Denotational semantics provides partial functions describing the 

effect of the translator input on the translational state

Translator ConclusionSemanticsApproachObjectives



Approach

Translation Semantics
• Very Simple Language (VSL), to explain approach:

• Syntactic Set 

• Example:

• State Space
• S: Identifiers (Strings)
• T: Keywords (Tokens)
• A: Attributes (Key-Value pairs)

A Translation Semantics for Driving Simulation Languages 9

5 Translation Semantics

As motivated above, we introduce a semantics of the translation between driving simulation
languages. This encompasses the translation from source to intermediate language and from
intermediate to target language. The central piece is the state space of the IR, which is
defined as follows.

Let � be a set of attributes, where each attribute comprises a set of key-value pairs (: , E),
with : constituting a property and E an associated value. Let further be ) a set of predefined
tokens (i. e. the language keywords of the main components of the IR described in Section 4),
and ( a set of names. Then ⌃ = P((⇥) ⇥ �) constitutes the state space of the IR. Whenever
the translator reads a new statement (e. g. a language construct describing an element of a
road), its translation state is updated to reflect the e�ect of the statement.

5.1 Translating Source Format to Intermediate Representation

As it is beyond the scope and available space of this paper to provide a detailed semantics
of the languages supported by out translator, we present the following very simple language
VSL with no further utility, except for illustrating the concept of the translation semantics.
The syntactic set for VSL road constructs is Con:

2 ::= 8(=, 0) | 8(=) | 8(0) | 20; 21

8 ::= road | lane

0 ::= E | E, 0

Where = are names (strings) to identify the individual constructs, and E are key-value pairs
as we also use them in the IR (see above), which can provide details such as geometric
properties. An example of an element of a specification in VSL for a single-lane street with
element named MainRoad with a length of 1000 meters, and a width of 3 meters would
look like this.

road (MainRoad, (length, 1000), (width, 3), (lanes, 1))

Consider the translation semantics function $ for VSL with O : Con ! (⌃ ! ⌃).

A new token is added or an existing token with the same name is modified, if the input is an
identifier with name and attribute:

$»8(=0<4, EU)… =

(
{(f,f0

) | f0 = f[(=0<4, C8 , 0[U/EU])]} if (=0<4, C8 , 0) 2 f

{(f,f0
) | f0 = f [ {(=0<4, C8 , 00

C8 [U/EU])} otherwise

Where f[(=0<4, C, 0[U/EU])] is short for f[(=0<4, C, 0)/(=0<4, C, 0[U/EU])].

A Translation Semantics for Driving Simulation Languages 9

5 Translation Semantics

As motivated above, we introduce a semantics of the translation between driving simulation
languages. This encompasses the translation from source to intermediate language and from
intermediate to target language. The central piece is the state space of the IR, which is
defined as follows.

Let � be a set of attributes, where each attribute comprises a set of key-value pairs (: , E),
with : constituting a property and E an associated value. Let further be ) a set of predefined
tokens (i. e. the language keywords of the main components of the IR described in Section 4),
and ( a set of names. Then ⌃ = P((⇥) ⇥ �) constitutes the state space of the IR. Whenever
the translator reads a new statement (e. g. a language construct describing an element of a
road), its translation state is updated to reflect the e�ect of the statement.

5.1 Translating Source Format to Intermediate Representation

As it is beyond the scope and available space of this paper to provide a detailed semantics
of the languages supported by out translator, we present the following very simple language
VSL with no further utility, except for illustrating the concept of the translation semantics.
The syntactic set for VSL road constructs is Con:

2 ::= 8(=, 0) | 8(=) | 8(0) | 20; 21

8 ::= road | lane

0 ::= E | E, 0

Where = are names (strings) to identify the individual constructs, and E are key-value pairs
as we also use them in the IR (see above), which can provide details such as geometric
properties. An example of an element of a specification in VSL for a single-lane street with
element named MainRoad with a length of 1000 meters, and a width of 3 meters would
look like this.

road (MainRoad, (length, 1000), (width, 3), (lanes, 1))

Consider the translation semantics function $ for VSL with O : Con ! (⌃ ! ⌃).

A new token is added or an existing token with the same name is modified, if the input is an
identifier with name and attribute:

$»8(=0<4, EU)… =

(
{(f,f0

) | f0 = f[(=0<4, C8 , 0[U/EU])]} if (=0<4, C8 , 0) 2 f

{(f,f0
) | f0 = f [ {(=0<4, C8 , 00

C8 [U/EU])} otherwise

Where f[(=0<4, C, 0[U/EU])] is short for f[(=0<4, C, 0)/(=0<4, C, 0[U/EU])].

A Translation Semantics for Driving Simulation Languages 9

5 Translation Semantics

As motivated above, we introduce a semantics of the translation between driving simulation
languages. This encompasses the translation from source to intermediate language and from
intermediate to target language. The central piece is the state space of the IR, which is
defined as follows.

Let � be a set of attributes, where each attribute comprises a set of key-value pairs (: , E),
with : constituting a property and E an associated value. Let further be ) a set of predefined
tokens (i. e. the language keywords of the main components of the IR described in Section 4),
and ( a set of names. Then ⌃ = P((⇥) ⇥ �) constitutes the state space of the IR. Whenever
the translator reads a new statement (e. g. a language construct describing an element of a
road), its translation state is updated to reflect the e�ect of the statement.

5.1 Translating Source Format to Intermediate Representation

As it is beyond the scope and available space of this paper to provide a detailed semantics
of the languages supported by out translator, we present the following very simple language
VSL with no further utility, except for illustrating the concept of the translation semantics.
The syntactic set for VSL road constructs is Con:

2 ::= 8(=, 0) | 8(=) | 8(0) | 20; 21

8 ::= road | lane

0 ::= E | E, 0

Where = are names (strings) to identify the individual constructs, and E are key-value pairs
as we also use them in the IR (see above), which can provide details such as geometric
properties. An example of an element of a specification in VSL for a single-lane street with
element named MainRoad with a length of 1000 meters, and a width of 3 meters would
look like this.

road (MainRoad, (length, 1000), (width, 3), (lanes, 1))

Consider the translation semantics function $ for VSL with O : Con ! (⌃ ! ⌃).

A new token is added or an existing token with the same name is modified, if the input is an
identifier with name and attribute:

$»8(=0<4, EU)… =

(
{(f,f0

) | f0 = f[(=0<4, C8 , 0[U/EU])]} if (=0<4, C8 , 0) 2 f

{(f,f0
) | f0 = f [ {(=0<4, C8 , 00

C8 [U/EU])} otherwise

Where f[(=0<4, C, 0[U/EU])] is short for f[(=0<4, C, 0)/(=0<4, C, 0[U/EU])].

A Translation Semantics for Driving Simulation Languages 9

5 Translation Semantics

As motivated above, we introduce a semantics of the translation between driving simulation
languages. This encompasses the translation from source to intermediate language and from
intermediate to target language. The central piece is the state space of the IR, which is
defined as follows.

Let � be a set of attributes, where each attribute comprises a set of key-value pairs (: , E),
with : constituting a property and E an associated value. Let further be ) a set of predefined
tokens (i. e. the language keywords of the main components of the IR described in Section 4),
and ( a set of names. Then ⌃ = P((⇥) ⇥ �) constitutes the state space of the IR. Whenever
the translator reads a new statement (e. g. a language construct describing an element of a
road), its translation state is updated to reflect the e�ect of the statement.

5.1 Translating Source Format to Intermediate Representation

As it is beyond the scope and available space of this paper to provide a detailed semantics
of the languages supported by out translator, we present the following very simple language
VSL with no further utility, except for illustrating the concept of the translation semantics.
The syntactic set for VSL road constructs is Con:

2 ::= 8(=, 0) | 8(=) | 8(0) | 20; 21

8 ::= road | lane

0 ::= E | E, 0

Where = are names (strings) to identify the individual constructs, and E are key-value pairs
as we also use them in the IR (see above), which can provide details such as geometric
properties. An example of an element of a specification in VSL for a single-lane street with
element named MainRoad with a length of 1000 meters, and a width of 3 meters would
look like this.

road (MainRoad, (length, 1000), (width, 3), (lanes, 1))

Consider the translation semantics function $ for VSL with O : Con ! (⌃ ! ⌃).

A new token is added or an existing token with the same name is modified, if the input is an
identifier with name and attribute:

$»8(=0<4, EU)… =

(
{(f,f0

) | f0 = f[(=0<4, C8 , 0[U/EU])]} if (=0<4, C8 , 0) 2 f

{(f,f0
) | f0 = f [ {(=0<4, C8 , 00

C8 [U/EU])} otherwise

Where f[(=0<4, C, 0[U/EU])] is short for f[(=0<4, C, 0)/(=0<4, C, 0[U/EU])].

ChallengeTranslator ConclusionSemanticsObjectives



Translation Semantics Source -> IR

A Translation Semantics for Driving Simulation Languages 9

5 Translation Semantics

As motivated above, we introduce a semantics of the translation between driving simulation
languages. This encompasses the translation from source to intermediate language and from
intermediate to target language. The central piece is the state space of the IR, which is
defined as follows.

Let � be a set of attributes, where each attribute comprises a set of key-value pairs (: , E),
with : constituting a property and E an associated value. Let further be ) a set of predefined
tokens (i. e. the language keywords of the main components of the IR described in Section 4),
and ( a set of names. Then ⌃ = P((⇥) ⇥ �) constitutes the state space of the IR. Whenever
the translator reads a new statement (e. g. a language construct describing an element of a
road), its translation state is updated to reflect the e�ect of the statement.

5.1 Translating Source Format to Intermediate Representation

As it is beyond the scope and available space of this paper to provide a detailed semantics
of the languages supported by out translator, we present the following very simple language
VSL with no further utility, except for illustrating the concept of the translation semantics.
The syntactic set for VSL road constructs is Con:

2 ::= 8(=, 0) | 8(=) | 8(0) | 20; 21

8 ::= road | lane

0 ::= E | E, 0

Where = are names (strings) to identify the individual constructs, and E are key-value pairs
as we also use them in the IR (see above), which can provide details such as geometric
properties. An example of an element of a specification in VSL for a single-lane street with
element named MainRoad with a length of 1000 meters, and a width of 3 meters would
look like this.

road (MainRoad, (length, 1000), (width, 3), (lanes, 1))

Consider the translation semantics function $ for VSL with O : Con ! (⌃ ! ⌃).

A new token is added or an existing token with the same name is modified, if the input is an
identifier with name and attribute:

$»8(=0<4, EU)… =

(
{(f,f0

) | f0 = f[(=0<4, C8 , 0[U/EU])]} if (=0<4, C8 , 0) 2 f

{(f,f0
) | f0 = f [ {(=0<4, C8 , 00

C8 [U/EU])} otherwise

Where f[(=0<4, C, 0[U/EU])] is short for f[(=0<4, C, 0)/(=0<4, C, 0[U/EU])].

A Translation Semantics for Driving Simulation Languages 9

5 Translation Semantics

As motivated above, we introduce a semantics of the translation between driving simulation
languages. This encompasses the translation from source to intermediate language and from
intermediate to target language. The central piece is the state space of the IR, which is
defined as follows.

Let � be a set of attributes, where each attribute comprises a set of key-value pairs (: , E),
with : constituting a property and E an associated value. Let further be ) a set of predefined
tokens (i. e. the language keywords of the main components of the IR described in Section 4),
and ( a set of names. Then ⌃ = P((⇥) ⇥ �) constitutes the state space of the IR. Whenever
the translator reads a new statement (e. g. a language construct describing an element of a
road), its translation state is updated to reflect the e�ect of the statement.

5.1 Translating Source Format to Intermediate Representation

As it is beyond the scope and available space of this paper to provide a detailed semantics
of the languages supported by out translator, we present the following very simple language
VSL with no further utility, except for illustrating the concept of the translation semantics.
The syntactic set for VSL road constructs is Con:

2 ::= 8(=, 0) | 8(=) | 8(0) | 20; 21

8 ::= road | lane

0 ::= E | E, 0

Where = are names (strings) to identify the individual constructs, and E are key-value pairs
as we also use them in the IR (see above), which can provide details such as geometric
properties. An example of an element of a specification in VSL for a single-lane street with
element named MainRoad with a length of 1000 meters, and a width of 3 meters would
look like this.

road (MainRoad, (length, 1000), (width, 3), (lanes, 1))

Consider the translation semantics function $ for VSL with O : Con ! (⌃ ! ⌃).

A new token is added or an existing token with the same name is modified, if the input is an
identifier with name and attribute:

$»8(=0<4, EU)… =

(
{(f,f0

) | f0 = f[(=0<4, C8 , 0[U/EU])]} if (=0<4, C8 , 0) 2 f

{(f,f0
) | f0 = f [ {(=0<4, C8 , 00

C8 [U/EU])} otherwise

Where f[(=0<4, C, 0[U/EU])] is short for f[(=0<4, C, 0)/(=0<4, C, 0[U/EU])].

A Translation Semantics for Driving Simulation Languages 9

5 Translation Semantics

As motivated above, we introduce a semantics of the translation between driving simulation
languages. This encompasses the translation from source to intermediate language and from
intermediate to target language. The central piece is the state space of the IR, which is
defined as follows.

Let � be a set of attributes, where each attribute comprises a set of key-value pairs (: , E),
with : constituting a property and E an associated value. Let further be ) a set of predefined
tokens (i. e. the language keywords of the main components of the IR described in Section 4),
and ( a set of names. Then ⌃ = P((⇥) ⇥ �) constitutes the state space of the IR. Whenever
the translator reads a new statement (e. g. a language construct describing an element of a
road), its translation state is updated to reflect the e�ect of the statement.

5.1 Translating Source Format to Intermediate Representation

As it is beyond the scope and available space of this paper to provide a detailed semantics
of the languages supported by out translator, we present the following very simple language
VSL with no further utility, except for illustrating the concept of the translation semantics.
The syntactic set for VSL road constructs is Con:

2 ::= 8(=, 0) | 8(=) | 8(0) | 20; 21

8 ::= road | lane

0 ::= E | E, 0

Where = are names (strings) to identify the individual constructs, and E are key-value pairs
as we also use them in the IR (see above), which can provide details such as geometric
properties. An example of an element of a specification in VSL for a single-lane street with
element named MainRoad with a length of 1000 meters, and a width of 3 meters would
look like this.

road (MainRoad, (length, 1000), (width, 3), (lanes, 1))

Consider the translation semantics function $ for VSL with O : Con ! (⌃ ! ⌃).

A new token is added or an existing token with the same name is modified, if the input is an
identifier with name and attribute:

$»8(=0<4, EU)… =

(
{(f,f0

) | f0 = f[(=0<4, C8 , 0[U/EU])]} if (=0<4, C8 , 0) 2 f

{(f,f0
) | f0 = f [ {(=0<4, C8 , 00

C8 [U/EU])} otherwise

Where f[(=0<4, C, 0[U/EU])] is short for f[(=0<4, C, 0)/(=0<4, C, 0[U/EU])].

Semantics as partial function:

Example: Statement with Identifier and Attribute è Update Attribute, if already known,
add to state, otherwise

Note:

ApproachChallengeTranslator ConclusionSemanticsObjectives



Translation Semantics Source -> IR
Statement with more than one attribute:

10 Jörn Schneider, Marvin Schneider

Note, that C8 is the token of the intermediate language that matches the identifier 8 of the
source language (in this example we assume a static 1:1 mapping). The default attribute 00

C
is needed to provide for (yet) missing values, e. g. when the input is a street with a name
but incomplete data (either because of implicit rules of the source language or because of
postponed definitions). For instance a given road identifier could come without a value for
the length of the road, and the matching value for the IR could be set to zero in this case.

Applying $»… to our example MainRoad from above would yield BCA44C as token in the IR
and more or less identical key-value pairs as given in the input example.

If there is more than one attribute in the input, the suitable functions are applied in order8:

$»8(=0<4, EU1 , ..., EU= )… = $»8(=0<4, EU2 , ..., EU= )… �$»8(=0<4, EU1 )…

If the input is a named identifier 8 without attribute (e. g. a new road element in the input
description without details yet) the matching token is added with name and default attributes
00
C8 :

$»8(=0<4)… = $»8(=0<4, E0C8 [1] , ..., E0C8 [=] )…

Where E0C8 [1] , ..., E0C8 [=] are the default values from 00
C8 .

If the input is unnamed with an attribute, the matching token is added with a new name and
the given attribute:

$»8(EU)… = $»8(=0<40, EU)…

Where =0<40 is a new name.

5.2 Translating Intermediate Representation to Target Format

We briefly present the principle approach to describe the translation semantics function
from our IR to SILAB and to ASAM OpenDRIVE, respectively.

5.2.1 SILAB

Let ⌫ be the set of all SILAB track components and % the set of all attributes of these
components. The state space can be described with⇥ = P((⇥⌫⇥%). To define the translation
semantics function from the IR to SILAB, a helper function B8; : ( ⇥ ) ⇥ � ! ( ⇥ ⌫ ⇥ %
is used, so that B8; provides the specific SILAB syntax for each tuple in a concrete state
f of the IR to be processed. The translation semantics function $B8; is similar to $ in
Subsection 5.1, with $B8; : ⌃ ! (⇥ ! ⇥).9

8 As composition function we use (6 � 5 ) (G ) = 6 ( 5 (G ) )
9 We do not include the serialization of the target language constructs to an output file, as we consider this as

separate subsequent step. However, this can be accounted for either as another semantics function or by adopting
$B8; accordingly.

10 Jörn Schneider, Marvin Schneider

Note, that C8 is the token of the intermediate language that matches the identifier 8 of the
source language (in this example we assume a static 1:1 mapping). The default attribute 00

C
is needed to provide for (yet) missing values, e. g. when the input is a street with a name
but incomplete data (either because of implicit rules of the source language or because of
postponed definitions). For instance a given road identifier could come without a value for
the length of the road, and the matching value for the IR could be set to zero in this case.

Applying $»… to our example MainRoad from above would yield BCA44C as token in the IR
and more or less identical key-value pairs as given in the input example.

If there is more than one attribute in the input, the suitable functions are applied in order8:

$»8(=0<4, EU1 , ..., EU= )… = $»8(=0<4, EU2 , ..., EU= )… �$»8(=0<4, EU1 )…

If the input is a named identifier 8 without attribute (e. g. a new road element in the input
description without details yet) the matching token is added with name and default attributes
00
C8 :

$»8(=0<4)… = $»8(=0<4, E0C8 [1] , ..., E0C8 [=] )…

Where E0C8 [1] , ..., E0C8 [=] are the default values from 00
C8 .

If the input is unnamed with an attribute, the matching token is added with a new name and
the given attribute:

$»8(EU)… = $»8(=0<40, EU)…

Where =0<40 is a new name.

5.2 Translating Intermediate Representation to Target Format

We briefly present the principle approach to describe the translation semantics function
from our IR to SILAB and to ASAM OpenDRIVE, respectively.

5.2.1 SILAB

Let ⌫ be the set of all SILAB track components and % the set of all attributes of these
components. The state space can be described with⇥ = P((⇥⌫⇥%). To define the translation
semantics function from the IR to SILAB, a helper function B8; : ( ⇥ ) ⇥ � ! ( ⇥ ⌫ ⇥ %
is used, so that B8; provides the specific SILAB syntax for each tuple in a concrete state
f of the IR to be processed. The translation semantics function $B8; is similar to $ in
Subsection 5.1, with $B8; : ⌃ ! (⇥ ! ⇥).9

8 As composition function we use (6 � 5 ) (G ) = 6 ( 5 (G ) )
9 We do not include the serialization of the target language constructs to an output file, as we consider this as

separate subsequent step. However, this can be accounted for either as another semantics function or by adopting
$B8; accordingly.

10 Jörn Schneider, Marvin Schneider

Note, that C8 is the token of the intermediate language that matches the identifier 8 of the
source language (in this example we assume a static 1:1 mapping). The default attribute 00

C
is needed to provide for (yet) missing values, e. g. when the input is a street with a name
but incomplete data (either because of implicit rules of the source language or because of
postponed definitions). For instance a given road identifier could come without a value for
the length of the road, and the matching value for the IR could be set to zero in this case.

Applying $»… to our example MainRoad from above would yield BCA44C as token in the IR
and more or less identical key-value pairs as given in the input example.

If there is more than one attribute in the input, the suitable functions are applied in order8:

$»8(=0<4, EU1 , ..., EU= )… = $»8(=0<4, EU2 , ..., EU= )… �$»8(=0<4, EU1 )…

If the input is a named identifier 8 without attribute (e. g. a new road element in the input
description without details yet) the matching token is added with name and default attributes
00
C8 :

$»8(=0<4)… = $»8(=0<4, E0C8 [1] , ..., E0C8 [=] )…

Where E0C8 [1] , ..., E0C8 [=] are the default values from 00
C8 .

If the input is unnamed with an attribute, the matching token is added with a new name and
the given attribute:

$»8(EU)… = $»8(=0<40, EU)…

Where =0<40 is a new name.

5.2 Translating Intermediate Representation to Target Format

We briefly present the principle approach to describe the translation semantics function
from our IR to SILAB and to ASAM OpenDRIVE, respectively.

5.2.1 SILAB

Let ⌫ be the set of all SILAB track components and % the set of all attributes of these
components. The state space can be described with⇥ = P((⇥⌫⇥%). To define the translation
semantics function from the IR to SILAB, a helper function B8; : ( ⇥ ) ⇥ � ! ( ⇥ ⌫ ⇥ %
is used, so that B8; provides the specific SILAB syntax for each tuple in a concrete state
f of the IR to be processed. The translation semantics function $B8; is similar to $ in
Subsection 5.1, with $B8; : ⌃ ! (⇥ ! ⇥).9

8 As composition function we use (6 � 5 ) (G ) = 6 ( 5 (G ) )
9 We do not include the serialization of the target language constructs to an output file, as we consider this as

separate subsequent step. However, this can be accounted for either as another semantics function or by adopting
$B8; accordingly.

10 Jörn Schneider, Marvin Schneider

Note, that C8 is the token of the intermediate language that matches the identifier 8 of the
source language (in this example we assume a static 1:1 mapping). The default attribute 00

C
is needed to provide for (yet) missing values, e. g. when the input is a street with a name
but incomplete data (either because of implicit rules of the source language or because of
postponed definitions). For instance a given road identifier could come without a value for
the length of the road, and the matching value for the IR could be set to zero in this case.

Applying $»… to our example MainRoad from above would yield BCA44C as token in the IR
and more or less identical key-value pairs as given in the input example.

If there is more than one attribute in the input, the suitable functions are applied in order8:

$»8(=0<4, EU1 , ..., EU= )… = $»8(=0<4, EU2 , ..., EU= )… �$»8(=0<4, EU1 )…

If the input is a named identifier 8 without attribute (e. g. a new road element in the input
description without details yet) the matching token is added with name and default attributes
00
C8 :

$»8(=0<4)… = $»8(=0<4, E0C8 [1] , ..., E0C8 [=] )…

Where E0C8 [1] , ..., E0C8 [=] are the default values from 00
C8 .

If the input is unnamed with an attribute, the matching token is added with a new name and
the given attribute:

$»8(EU)… = $»8(=0<40, EU)…

Where =0<40 is a new name.

5.2 Translating Intermediate Representation to Target Format

We briefly present the principle approach to describe the translation semantics function
from our IR to SILAB and to ASAM OpenDRIVE, respectively.

5.2.1 SILAB

Let ⌫ be the set of all SILAB track components and % the set of all attributes of these
components. The state space can be described with⇥ = P((⇥⌫⇥%). To define the translation
semantics function from the IR to SILAB, a helper function B8; : ( ⇥ ) ⇥ � ! ( ⇥ ⌫ ⇥ %
is used, so that B8; provides the specific SILAB syntax for each tuple in a concrete state
f of the IR to be processed. The translation semantics function $B8; is similar to $ in
Subsection 5.1, with $B8; : ⌃ ! (⇥ ! ⇥).9

8 As composition function we use (6 � 5 ) (G ) = 6 ( 5 (G ) )
9 We do not include the serialization of the target language constructs to an output file, as we consider this as

separate subsequent step. However, this can be accounted for either as another semantics function or by adopting
$B8; accordingly.

Where are default values

Statement without attributes:

Statement unnamed, with attributes:

With 

10 Jörn Schneider, Marvin Schneider

Note, that C8 is the token of the intermediate language that matches the identifier 8 of the
source language (in this example we assume a static 1:1 mapping). The default attribute 00

C
is needed to provide for (yet) missing values, e. g. when the input is a street with a name
but incomplete data (either because of implicit rules of the source language or because of
postponed definitions). For instance a given road identifier could come without a value for
the length of the road, and the matching value for the IR could be set to zero in this case.

Applying $»… to our example MainRoad from above would yield BCA44C as token in the IR
and more or less identical key-value pairs as given in the input example.

If there is more than one attribute in the input, the suitable functions are applied in order8:

$»8(=0<4, EU1 , ..., EU= )… = $»8(=0<4, EU2 , ..., EU= )… �$»8(=0<4, EU1 )…

If the input is a named identifier 8 without attribute (e. g. a new road element in the input
description without details yet) the matching token is added with name and default attributes
00
C8 :

$»8(=0<4)… = $»8(=0<4, E0C8 [1] , ..., E0C8 [=] )…

Where E0C8 [1] , ..., E0C8 [=] are the default values from 00
C8 .

If the input is unnamed with an attribute, the matching token is added with a new name and
the given attribute:

$»8(EU)… = $»8(=0<40, EU)…

Where =0<40 is a new name.

5.2 Translating Intermediate Representation to Target Format

We briefly present the principle approach to describe the translation semantics function
from our IR to SILAB and to ASAM OpenDRIVE, respectively.

5.2.1 SILAB

Let ⌫ be the set of all SILAB track components and % the set of all attributes of these
components. The state space can be described with⇥ = P((⇥⌫⇥%). To define the translation
semantics function from the IR to SILAB, a helper function B8; : ( ⇥ ) ⇥ � ! ( ⇥ ⌫ ⇥ %
is used, so that B8; provides the specific SILAB syntax for each tuple in a concrete state
f of the IR to be processed. The translation semantics function $B8; is similar to $ in
Subsection 5.1, with $B8; : ⌃ ! (⇥ ! ⇥).9

8 As composition function we use (6 � 5 ) (G ) = 6 ( 5 (G ) )
9 We do not include the serialization of the target language constructs to an output file, as we consider this as

separate subsequent step. However, this can be accounted for either as another semantics function or by adopting
$B8; accordingly.

as new name

ApproachChallengeTranslator ConclusionSemanticsObjectives



Semantics

Conclusion and Future Work

• Retargetable Translator for Driving Simulation Languages
• Currently Supported Languages: SILAB, ASAM OpenDrive
• Static Items and Properties of Road Networks

• Reflections on Semantics of Driving Simulator Languages
• Potential Approaches:

• “Exact” Physical Properties
• Abstract Driving Simulator Machine

• Challenging and unsolved issue

• First Translation Semantics for Driving Simulation Languages
• Allows to reason about correctness of Translation
• Does not aim at, nor solve the Language Semantics Issue
• Starting ground for Verification, e.g. following Translation Validation concept

ApproachChallengeTranslator ConclusionObjectives



Acknowledgement & Further Details

For an in-depth treatment see:
Schneider, Jörn & Schneider, Marvin, (2022). A Translation 
Semantics for Driving Simulation Languages. In: Michael, J., 
Pfeiffer, J. & Wortmann, A. (Hrsg.), Software Engineering 2022 
Workshops. Bonn: Gesellschaft für Informatik e.V.. (S. 70-81). 
DOI: 10.18420/se2022-ws-10

Thanks goes to Marvin Schneider who implemented the 
retargetable translator as part of his Master Thesis.

https://dx.doi.org/10.18420/se2022-ws-10


... Thank You for Listening!
Contact: j.schneider@hochschule-trier.de


